Advanced 3D graphics for movies and games (NPGRo10)

- Monte Carlo integration \& Direct illumination

Jiří Vorba, MFF UK/Weta Digital
jirka@cgg.mff.cuni.cz

Slides of prof. Jaroslav Křivánek, minor edits by Jiří Vorba

Entire the lecture in 5 slides

Reflection equation

- Total reflected radiance: integrate contributions of incident radiance, weighted by the BRDF , over the hemisphere
upper hemisphere over x

Rendering = Integration of functions

Monte Carlo integration

- General tool for estimating definite integrals

Integral:

$$
I=\int g(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Monte Carlo estimate I :
$\langle I\rangle=\frac{1}{N} \sum_{k=1}^{N} \frac{g\left(\xi_{k}\right)}{p\left(\xi_{k}\right)} ; \quad \xi_{k} \propto p(\mathbf{x})$
Works "on average":

$$
E[\langle I\rangle]=I
$$

Application of MC to reflection eq: Estimator of reflected radiance

- Integral to be estimated:

$$
\int_{H(\mathbf{x})} L_{\text {in }}\left(\omega_{\text {in }}\right) f_{r}\left(\omega_{\text {in }} \rightarrow \omega_{\text {out }}\right) \cos \theta_{\text {in }} \underbrace{}_{\text {integrand }\left(\omega_{\text {in }}\right)} \mathrm{d} \omega_{\text {in }}
$$

- pdf for cosine-proportional sampling:

$$
p\left(\omega_{\mathrm{in}}\right)=\frac{\cos \theta_{\mathrm{in}}}{\pi}
$$

- MC estimator (formula to use in the renderer):

$$
\begin{aligned}
\hat{L}_{\mathrm{out}} & =\frac{1}{N} \sum_{k=1}^{N} \frac{\operatorname{integrand}\left(\omega_{\mathrm{in}, k}\right)}{\operatorname{pdf}\left(\omega_{\mathrm{in}, k}\right)} \\
& =\frac{\pi}{N} \sum_{k=1}^{N} L_{\mathrm{in}}\left(\omega_{\mathrm{in}, k}\right) f_{r}\left(\omega_{\mathrm{in}, k} \rightarrow \omega_{\mathrm{out}}\right)
\end{aligned}
$$

Estimator of reflected radiance: Implementation

```
// input variables
x...shaded point on a surface
normal...surface normal at x
omegaOut...viewing (camera) direction
estimatedRadianceOut := Rgb (0,0,0);
for k = 1...N
    [omegaInK, pdf] := generateRndDirection();
    // evaluate integrand
    radianceInEst := getRadianceIn(x, omegaInK);
    brdf := evalBrdf(x, omegaInK, omegaOut);
    cosThetaIn := dot(normal, omegaInK);
    integrand := radianceInEst * brdf * cosThetaIn;
    // evaluate contribution to the outgoing radiance
    estimatedRadianceOut += integrand / pdf;
end for
estimatedRadianceOut /= N;
```


Variance => image noise

... and now the slow way

Digression:

Numerical quadrature

Quadrature formulas for numerical integration

- General formula in 1D:

$$
\hat{I}=\sum_{k=1}^{N} w_{k} g\left(x_{k}\right)
$$

$g \quad$ integrand (i.e. the integrated function)
N quadrature order (i.e. number of integrand samples)
$x_{k} \quad$ node points (i.e. positions of the samples)
$g\left(\mathrm{x}_{k}\right)$ integrand values at node points
$w_{k} \quad$ quadrature weights

Quadrature formulas for numerical integration

- Quadrature rules differ by the choice of node point positions x_{k} and the weights w_{k}
- E.g. rectangle rule, trapezoidal rule, Simpson's method, Gauss quadrature, ...
- The samples (i.e. the node points) are placed deterministically

Quadrature formulas in multiple dimensions

- General formula for quadrature of a function of multiple variables:

$$
\hat{I}=\sum_{k_{1}=1}^{N} \sum_{k_{2}=1}^{N} \ldots \sum_{k_{d}=1}^{N} w_{k_{1}} w_{k_{2}} \ldots w_{k_{s}} f\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{d}}\right)
$$

- Convergence speed of approximation error E for a d dimensional integral is $E=\mathrm{O}\left(\mathrm{N}^{-1 / d}\right)$
- E.g. in order to cut the error in half for a 3-dimensional integral, we need $2^{3}=8$ times more samples
- Unusable in higher dimensions
- Dimensional explosion

Quadrature formulas in multiple dimensions

- Deterministic quadrature vs. Monte Carlo
- In 1D deterministic better than Monte Carlo
- In 2D roughly equivalent
- From 3D, MC will always perform better
- Remember, quadrature rules are NOT the Monte Carlo method

Monte Carlo

History of the Monte Carlo method

- Atomic bomb development, Los Alamos 1940 John von Neumann, Stanislav Ulam, Nicholas Metropolis
- Further development and practical applications from the early 50's

Monte Carlo method

- We simulate many random occurrences of the same type of events, e.g.:
- Neutrons - emission, absorption, collisions with hydrogen nuclei
- Behavior of computer networks, traffic simulation.
- Sociological and economical models - demography, inflation, insurance, etc.

Monte Carlo - applications

- Financial market simulations
- Traffic flow simulations
- Environmental sciences
- Particle physics
- Quantum field theory
- Astrophysics
- Molecular modeling
- Semiconductor devices
- Optimization problems
- Light transport calculations

Example: calculation of π

Slide credit: Iwan Kawrakov

Area of square: $A_{s}=4$ Area of circle: $A_{c}=\pi$ Fraction p of random points inside circle:

$$
p=\frac{A_{c}}{A_{s}}=\frac{\pi}{4}
$$

Random points: N
Random points inside circle: N_{c}

$$
\Rightarrow \quad \pi=\frac{4 N_{c}}{N}
$$

Calculation of π (cont'd)

Slide credit: Iwan Kawrakov

Variance => image noise

Monte Carlo integration

- Samples are placed randomly (or pseudo-randomly)
- Convergence of standard error: std. dev. $=\mathrm{O}\left(\mathrm{N}^{-1 / 2}\right)$
- Convergence speed independent of dimension
- Faster than classic quadrature rules for 3 and more dimensions
- Special methods for placing samples exist
- Quasi-Monte Carlo
- Faster asymptotic convergence than MC for "smooth" functions

Monte Carlo integration

- Pros
- Simple implementation
- Robust solution for complex integrands and integration domains
- Effective for high-dimensional integrals
- Cons
- Relatively slow convergence - halving the standard error requires four times as many samples
- In rendering: images contain noise that disappears slowly

Review - Random variables

Random variable

- X... random variable
- X assumes different values with different probability
- Given by the probability distribution D
- $X \sim D$

Discrete random variable

- Finite set of values of x_{i}
- Each assumed with prob. p_{i} $p_{i} \equiv \operatorname{Pr}\left(X=x_{i}\right) \geq 0 \quad \sum_{i=1}^{n} p_{i}=1$

Probability mass function

$$
P_{i} \equiv \operatorname{Pr}\left(X \leq x_{i}\right)=\sum_{j=1}^{i} p_{j} \quad P_{n}=1
$$

Continuous random variable

- Probability density function, pdf, $p(x)$

$$
\operatorname{Pr}(X \in D)=\int_{D} p(x) \mathrm{d} x
$$

- In 1D:

$$
\operatorname{Pr}(a<X \leq b)=\int_{a}^{b} p(t) \mathrm{d} t
$$

Continuous random variable

- Cumulative distribution function, cdf, $P(x)$

In 1D:

$$
\begin{gathered}
P(x) \equiv \operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} p(t) \mathrm{d} t \\
\operatorname{Pr}(X=a)=\int_{a}^{a} p(t) \mathrm{d} t=0!
\end{gathered}
$$

Continuous random variable

Example: Uniform distribution

Probability density function (pdf)

Cumulative distribution function (cdf)

Continuous random variable

Gaussian (normal) distribution

Probability density function (pdf)

Cumulative distribution function (cdf)

Expected value and variance

- Expected value

$$
E[X]=\int_{D} \mathbf{x} p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

- Variance

$$
\begin{aligned}
V[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

- Properties of variance

$$
\left.V\left[\sum_{i} X_{i}\right]=\sum_{i} V\left[X_{i}\right] \quad \text { (if } X_{i} \text { are independent }\right)
$$

Transformation of a random variable

$$
Y=g(X)
$$

- Y is a random variable
- Expected value of Y

$$
E[Y]=\int_{D} g(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}
$$

Monte Carlo integration

Monte Carlo integration

- General tool for estimating definite integrals

Integral:

$$
I=\int g(x) \mathrm{dx}
$$

Monte Carlo estimate I :

$$
\langle I\rangle=\frac{1}{N} \sum_{k=1}^{N} \frac{g\left(\xi_{k}\right)}{p\left(\xi_{k}\right)} ; \quad \xi_{k} \propto p(\mathbf{x})
$$

$0 \quad \xi_{5} \quad \xi_{3} \xi_{1} \quad \xi_{4} \quad \xi_{2} \quad \xi_{6} \quad 1$
Works "on average":

$$
E[(I\rangle]=I
$$

Primary estimator of an integral

Integral to be estimated:

$$
I=\int_{\Omega} f(x) \mathrm{d} x
$$

Let X be a random variable from the distribution with the pdf $p(x)$, then the random variable $F_{\text {prim }}$ given by the transformation $f(X) / p(X)$ is called the primary estimator of the above integral.

$$
F_{\mathrm{prim}}=\frac{f(X)}{p(X)}
$$

Primary estimator of an integral

Advanced 3D Graphics (NPGR010) - J. Vorba 2020,

Estimator vs. estimate

- Estimator is a random variable
- It is defined though a transformation of another random variable
- Estimate is a concrete realization (outcome) of the estimator
- No need to worry: the above distinction is important for proving theorems but less important in practice

Unbiased estimator

- A general statistical estimator is called unbiased if "on average" - it yields the correct value of an estimated quantity Q (without systematic error).
- More precisely:

Estimator of the quantity Q (random variable)

Estimated quantity (In our case, it is an integral, but in general it could be anything. It is a number, not a random variable.)

Unbiased estimator

The primary estimator $F_{\text {prim }}$ is an unbiased estimator of the integral I.

Proof:

$$
\begin{aligned}
E\left[F_{\text {prim }}\right] & =\int_{\Omega} \frac{f(x)}{p(x)} p(x) \mathrm{d} x \\
& =I
\end{aligned}
$$

Variance of the primary estimator

For an unbiased estimator, the error is due to variance:

$$
V\left[\underline{F_{\text {prim }}}\right]=\sigma_{\text {prim }}^{2}=E\left[F_{\text {prim }}{ }^{2}\right]-E\left[F_{\text {prim }}\right]^{2}=\int_{\Omega} \frac{f(x)^{2}}{p(x)} \mathrm{d} x-I^{2}
$$

(for an unbiased estimator)

If we use only a single sample, the variance is usually too high. Depends on $\mathrm{p}(\mathrm{x})$.
We need more samples in practice $=>$ secondary estimator.

Secondary estimator of an integral

- Consider N independent random variables X_{k}
- The estimator F_{N} given be the formula below is called the secondary estimator of I.

$$
F_{N}=\frac{1}{N} \sum_{k=1}^{N} \frac{f\left(X_{k}\right)}{p\left(X_{k}\right)}
$$

- The secondary estimator is unbiased.

Variance of the secondary estimator

$$
\begin{aligned}
V\left[F_{N}\right] & =V\left[\frac{1}{N} \sum_{k=1}^{N} \frac{f\left(X_{k}\right)}{p\left(X_{k}\right)}\right] \\
& =\frac{1}{N^{2}} \cdot N \cdot V\left[\frac{f\left(X_{k}\right)}{p\left(X_{k}\right)}\right] \\
& =\frac{1}{N} V\left[F_{\text {prim }}\right]
\end{aligned}
$$

... standard deviation is $\sqrt{ } \boldsymbol{N}$-times smaller! (i.e. error converges with $\mathbf{1} / \sqrt{ } \boldsymbol{N}$)

Properties of estimators

Unbiased estimator

- A general statistical estimator is called unbiased if "on average" - it yields the correct value of an estimated quantity Q (without systematic error).
- More precisely:

Estimator of the quantity Q (random variable)

Estimated quantity (In our case, it is an integral, but in general it could be anything. It is a number, not a random variable.)

Bias of a biased estimator

- If

$$
E[F] \neq Q
$$

then the estimator is "biased" (cz: vychýlený).

- Bias is the systematic error of the estimator:

$$
\beta=Q-E[F]
$$

Consistency

- Consider a secondary estimator with N samples:

$$
F_{N}=F_{N}\left(X_{1}, X_{2}, \ldots, X_{N}\right)
$$

- Estimator F_{N} is consistent if

$$
\operatorname{Pr}\left\{\lim _{N \rightarrow \infty} F_{N}=Q\right\}=1
$$

i.e. if the error $F_{N}-Q$ converges to zero with probability 1.

Consistency

- Sufficient condition for consistency of an estimator:

$$
\lim _{N \rightarrow \infty} \beta\left[F_{N}\right]=\lim _{N \rightarrow \infty} V\left[F_{N}\right]=0
$$

- Unbiasedness is not sufficient for consistency by itself (if the variance is infinite).
- But if the variance of a primary estimator finite, then the corresponding secondary estimator is necessarily consistent.

Rendering algorithms

- Unbiased
- Path tracing
- Bidirectional path tracing
- Metropolis light transport
- Biased \& Consistent
- Progressive photon mapping
- Biased \& not consistent
- Photon mapping
- Irradiance / radiance caching

Mean Squared Error - MSE (cz: Střední kvadratická chyba)

- Definition

$$
M S E[F]=E\left[(F-Q)^{2}\right]
$$

- Proposition

$$
\operatorname{MSE}[F]=V[F]+\beta[F]^{2}
$$

- Proof

$$
\begin{aligned}
M S E[F] & =E\left[(F-Q)^{2}\right] \\
& =E\left[(F-E[F])^{2}\right]+2 E[F-E[F]](E[F]-Q)+(E[F]-Q)^{2} \\
& =V[F]+\beta[F]^{2}, \\
& \text { Advanced 3D Graphics (NPGR010) - J. Vorba 2020, }
\end{aligned}
$$

Mean Squared Error - MSE
 (cz: Střední kvadratická chyba)

- If the estimator F is unbiased, then

$$
M S E[F]=V[F]
$$

i.e. for an unbiased estimator, it is much easier to estimate the error, because it can be estimated directly from the samples $Y_{k}=f\left(X_{k}\right) / p\left(X_{k}\right)$.

- Unbiased estimator of variance

$$
\hat{V}\left[F_{N}\right]=\frac{1}{N-1}\left\{\left(\frac{1}{N} \sum_{k=1}^{N} Y_{k}^{2}\right)-\left(\frac{1}{N} \sum_{k=1}^{N} Y_{k}\right)^{2}\right\}
$$

Why divide by $\mathbf{N - 1}$ instead of \mathbf{N} ?

- To get an unbiased estimate
- https://en.wikipedia.org/wiki/Bessel\'s correction

Root Mean Squared Error - RMSE

$\operatorname{RMSE}[F]=\sqrt{M S E[F]}$

Efficiency of an estimator

- Efficiency of an unbiased estimator is given by:

Calculation time
(i.e. operations count, such as number of cast rays)

MC estimators for illumination calculation

Estimator of reflected radiance (1)

- Integral to be estimated:

$$
\left.\int_{H(\mathbf{x})} L_{\text {in }} L_{\text {integrand }\left(\omega_{\text {in }}\right)}\right) f_{r}\left(\omega_{\text {in }} \rightarrow \omega_{\text {out }}\right) \cos \theta_{\text {in }} d \omega_{\text {in }}
$$

- pdf for uniform hemisphere sampling:

$$
p\left(\omega_{\text {in }}\right)=\frac{1}{2 \pi}
$$

- MC estimator (formula to use in the renderer):

$$
\begin{aligned}
\hat{L}_{\mathrm{out}} & =\frac{1}{N} \sum_{k=1}^{N} \frac{\operatorname{integrand}\left(\omega_{\mathrm{in}, k}\right)}{\operatorname{pdf}\left(\omega_{\mathrm{in}, k}\right)} \\
& =\frac{2 \pi}{N} \sum_{k=1}^{N} L_{\mathrm{in}}\left(\omega_{\mathrm{in}, k}\right) f_{r}\left(\omega_{\mathrm{in}, k} \rightarrow \omega_{\mathrm{out}}\right) \cos \theta_{\mathrm{in}, k}
\end{aligned}
$$

Application of MC to reflection eq: Estimator of reflected radiance

- Integral to be estimated:

$$
\int_{H(\mathbf{x})} L_{\text {in }}\left(\omega_{\text {in }}\right) f_{r}\left(\omega_{\text {in }} \rightarrow \omega_{\text {out }}\right) \cos \theta_{\text {in }} \underbrace{}_{\text {integrand }\left(\omega_{\text {in }}\right)} \mathrm{d} \omega_{\text {in }}
$$

- pdf for cosine-proportional sampling:

$$
p\left(\omega_{\mathrm{in}}\right)=\frac{\cos \theta_{\mathrm{in}}}{\pi}
$$

- MC estimator (formula to use in the renderer):

$$
\begin{aligned}
\hat{L}_{\mathrm{out}} & =\frac{1}{N} \sum_{k=1}^{N} \frac{\operatorname{integrand}\left(\omega_{\mathrm{in}, k}\right)}{\operatorname{pdf}\left(\omega_{\mathrm{in}, k}\right)} \\
& =\frac{\pi}{N} \sum_{k=1}^{N} L_{\mathrm{in}}\left(\omega_{\mathrm{in}, k}\right) f_{r}\left(\omega_{\mathrm{in}, k} \rightarrow \omega_{\mathrm{out}}\right)
\end{aligned}
$$

Irradiance estimate - light source sampling

Advanced 3D Graphics (NPGR010) - J. Vorba 2020,

Irradiance estimate - light source sampling

- Reformulate the reflection integral (change of variables)

$$
\begin{aligned}
E(\mathbf{x}) & =\int_{H(\mathbf{x})} L_{\mathrm{i}}\left(\mathbf{x}, \omega_{\mathrm{i}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}} \\
& =\int_{A} L_{\mathrm{e}}(\mathbf{y} \rightarrow \mathbf{x}) \cdot V(\mathbf{y} \leftrightarrow \mathbf{x}) \cdot \frac{\cos \theta_{\mathbf{y}} \cdot \cos \theta_{\mathbf{x}}}{\|\mathbf{y}-\mathbf{x}\|^{2}} \mathrm{~d} A
\end{aligned}
$$

- PDF for uniform sampling of the surface area:

$$
p(\mathbf{y})=\frac{1}{|A|}
$$

- Estimator

$$
F_{N}=\frac{|A|}{N} \sum_{k=1}^{N} L_{\mathrm{e}}\left(\mathbf{y}_{k} \rightarrow \mathbf{x}\right) \cdot V\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right) \cdot G\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right)
$$

Light source vs. cosine sampling

Light source area sampling

Cosine-proportional sampling

Images: Pat Hanrahan

Example - Area Sampling

1 shadow ray per eye ray

Center

Random

Pat Hanrahan, Spring 2011

Example - Area Sampling

16 shadow rays per eye ray

Uniform grid
Stratified random

Area light sources

1 sample per pixel

36 samples per pixel

Direct illumination on a surface with an arbitrary BRDF

- Integral to be estimated
$L_{\mathrm{o}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\int_{A} L_{\mathrm{e}}(\mathbf{y} \rightarrow \mathbf{x}) \cdot f_{r}\left(\mathbf{y} \rightarrow \mathbf{x} \rightarrow \omega_{\mathrm{o}}\right) \cdot V(\mathbf{y} \leftrightarrow \mathbf{x}) \cdot G(\mathbf{y} \leftrightarrow \mathbf{x}) \mathrm{d} A$
- Estimator based on uniform light source sampling

$$
F_{N}=\frac{|A|}{N} \sum_{k=1}^{N} L_{\mathrm{e}}\left(\mathbf{y}_{k} \rightarrow \mathbf{x}\right) \cdot f_{r}\left(\mathbf{y}_{k} \rightarrow \mathbf{x} \rightarrow \omega_{\mathrm{o}}\right) \cdot V\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right) \cdot G\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right)
$$

